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Alternative approach to the numerical synthesis of the dense-ion-beam focusing systems
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An alternative approach has been developed to the numerical synthesis of ion-beam focusing systems that
prepare the dense laminar ion beams with the required profile of the ion trajectories. Conventionally an
ill-posed synthesis problem arises in such cases, and only low-density beams with no magnetic field are treated.
Instead, we compute both the electric and magnetic fields by considering two well-posed problems, the first for
the equivalent potentialQ and the second for the electric potentialU. An analytical solution forQ for the
specific case of an axial system has been found and a self-consistent method of satisfying the axial boundary
conditions for Poisson’s equation inU is described. It is shown that the beam can be focused while preserving
its laminar structure and the required profile when applying various superpositions of both the electric and
magnetic fields.
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I. INTRODUCTION

Ion and electron beams of high density are in use in m
fields of modern science and technology@1–4#. The dense
electron beams are required for powerful microwave a
millimeter wave generators@1#. Well-formed high-power ion
beams are needed for etching and modification of me
semiconductor, and insulator surfaces@2#. Another important
application is the ion doping of semiconductors when
beams of various energy, density, and chemical compos
are used to obtain the doping profiles with the required s
tial configuration@3,4#.

Formation of ion beams of high density is a complicat
problem because of the very strong Coulomb interaction
the ions within the beam@5#. So, a magnetic field is normall
required, in addition to a properly configured electric field,
order to compress a stream of accelerated ions into the d
beam of a special shape@6,7#. Unfortunately, the magnetic
field essentially complicates the internal structure of
beam due to heavy mixing of the ion trajectories and
creation of a turbulent flux of particles instead of a lamin
stream. This may be unacceptable for many applicati
when especially high precision and spatial resolution are
quired @4#.

An intriguing question of practical importance arises
such cases as to whether it is possible to focus a dense
beam while preserving its perfect laminar structure wh
both the electric and magnetic fields have been applied
multaneously. Because of the magnetic field mixing the
jectories, there is a presumption that this is generally imp
sible except for the trivial case of a cylindrical beam in
uniform magnetic field~the Brillouin solution! @6,7#.

Apart from this question, it is a complicated problem
itself to calculate both the electric and magnetic fields in a
combined electromagnetic system producing high-den
ion beams@5–7#. The complications appear due to the fa
that the synthesis of the focusing system is an inverse m
ematical problem that is typically formulated as an ill-pos
Cauchy problem for Laplace’s or Poisson’s equation@6#.
Such a formulation is, however, inappropriate for the n
merical solution because of numerical instability of ill-pos
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problems. For this reason, the synthesis problem was o
considered for low-density beams with no magnetic fie
when analytical solutions to Laplace’s equation could
found using the theory of functions of a complex variab
@6,7#.

In order to overcome the complications, another appro
was proposed in@8# that is based on the possibility of con
sidering and solving numerically a series of more gene
well-posed boundary-value problems instead of a sin
problem arising due to the conventional approach. Accord
to @8#, some functions used for imposing the boundary co
ditions could be chosen arbitrarily so that a series of so
tions for the electric and magnetic fields is obtained. In g
eral, any of these could be used as the final solution si
they all yield a solution to the original problem providing th
required spatial structure of the beam.

The aim of this work is to develop the approach in@8# in
order to find analytical solutions whenever possible and
propose the effective procedure for choosing the most ap
priate solution for the electric and magnetic fields needed
preparing the dense laminar ion beams with a required s
tial configuration.

II. PROBLEM FORMULATION

Consider a cylindrical focusing system of the lengthL and
radiusR supporting a dense laminar ion beam of axial sy
metry and of gradually decreasing radius. The beam pro
gates along thez axis from the entrance plane atz50 to the
exit plane atz5L and consists of one type of ion with mas
m and chargee. The ions move within the beam due to th
force of both the electric and magnetic fields, which are ch
acterized by the scalar potentialU(r ,z) and the vector po-
tential A(r ,z)5Aw(r ,z)ŵ with the axial symmetry of the
system taken into account.

The ion trajectories are specified by their projections o
the meridional plane (r ,z) in the cylindrical coordinate
frame (r ,w,z),

r 5r ~r 0 ,z!, ~1!
©2001 The American Physical Society01-1
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wherer 0 is the radial coordinate of the initial point (r 0,0) of
the trajectory considered~Fig. 1!. For simplicity, we assume
below that all the curvesr 5r (r 0 ,z) are orthogonal to ther
axis at z50 and all the ions have the same axial veloc
Vz(r 0,0)5const at the entrance planez50.

The density of the trajectories is specified by their rad
distribution p(r 0) at z50. Using the conditionVz(r 0,0)
5const, the functionp(r 0) is normalized to be identical to
the local ion density at the entrance plane, withP0

52p*0
Rp(r 0)r 0dr0 being the line density of the beam atz

50.
Notice that the ion trajectories in a laminar beam,

though being twisted by the magnetic field, do not interse
nor do their projections on the meridional plane given by E
~1!. So, for any trajectory passing through any given po
(r ,z), a unique value for the initial coordinater 05r 0(r ,z)
can always be found by inverting the functions~1!.

Functions~1! should satisfy Stormer’s trajectory equatio
@7#

d2r

dz2 5S ]Q

]r
2

]Q

]z

dr

dzD F11S dr

dzD
2G 1

2Q
, ~2!

where

Q5Q~r ,z!5T2h~C2C0!2/r 2 ~3!

is the effective potential,

T5T~r ,z!52eU/ueu, ~4!

h5ueu/(8p2m), C5C(r ,z)52prAw(r ,z) is the magnetic
flux associated with the circular loop of the radiusr at the
planez, andC05C0(r 0)5C(r 0,0) is the value ofC at the
initial point (r 0,0) of the trajectory passing through the poi
(r ,z), with r 05r 0(r ,z) according to Eq.~1!.

The equivalent potentialQ(r ,z) must be positive to de
termine the axial component of the ion velocity

Vz~r ,z!5A2ueuQ~r ,z!/$m@11~dr/dz!2#%. ~5!

Q(r ,z) should also satisfy the assumptionVz(r 0,0)5const
made about the ion motion in Eq.~1!.

FIG. 1. Projections of the ion trajectoriesr 5r (r 0 ,z) onto the
meridional plane~relative units!.
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Equation~2! is normally used to find the ion trajectorie
when Q(r ,z) is known. However, if the trajectories ar
known, one can use Eq.~2! to obtain the effective potentia
Q(r ,z). In terms ofQ, Eq. ~2! is a linear partial differential
equation of the first order. Therefore, one can always solv
by the method of characteristics provided the trajector
have no return points and the boundary values ofQ(r ,z) are
given along the curve that is not a characteristic@9#. A suit-
able curve of this kind is the axisOZ, where the values
Q0(z)5Q(0,z) determine the ion velocity along the axis,

V0~z!5Vz~0,z!5A2ueuQ0~z!/m. ~6!

The functionQ0(z) is one of a series of functions chose
arbitrarily according to the approach in@8#.

Once Q(r ,z) is found, the electric potentialU(r ,z)
52ueuT(r ,z)/e can be obtained from Poisson’s equation

]2U

]r 2 1
1

r

]U

]r
1

]2U

]z2 52
r

«0
, ~7!

wherer(r ,z) is the space-charge density of the beam and«0
is the absolute permittivity. The functionr(r ,z) is already
available since it is determined by the ion trajector
r (r 0 ,z), their entrance distributionp(r 0), and the ion veloc-
ity Vz(r ,z), so that

r~r ,z!5ep~r 0!~r 0 /r !2Vz~0,0!/Vz~r ,z!, ~8!

wherer 05r 0(r ,z) according to Eq.~1!.
Equation~7! can be solved by any numerical method pr

vided a well-posed boundary-value problem is formulated
suitable formulation would be the Dirichlet problem whe
the functions U(0,z), U(R,z), U(r ,0), and U(r ,L) are
considered as the given boundary values required for
unique solutionU(r ,z) to be obtained. These functions ca
be freely chosen to be any reasonably smooth functions

Proceeding in this way, one obtains the functionT(r ,z)
52eU(r ,z)/ueu, which is normally different from the func-
tion Q(r ,z). This means that some magnetic field is gen
ally required to obtain the desired trajectories~1!. The mag-
netic field can be found from the magnetic fluxC(r ,z)
calculated as

C~r ,z!5C0~r 0!1rA~T2Q!/h, ~9!

where C0(r 0)5C(r 0,0) is also the function chosen arb
trarily and r 05r 0(r ,z).

Thus, according to this approach, an infinite set of vario
solutions for the electric and magnetic fields can be fou
depending on a few arbitrarily chosen functions, and each
the solutions provides the same set of the trajectory pro
tions r 5r (r 0 ,z) on the meridional plane as required, a
though the trajectories can be twisted in a different w
about the beam axis.

Notice, however, that the choice of some arbitrary fun
tions is in some aspects restricted. First, according to
definition of Q, one has always the condition

T~r ,0!5Q~r ,0! ~10!
1-2
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ALTERNATIVE APPROACH TO THE NUMERICAL . . . PHYSICAL REVIEW E 63 046501
but this only implies that the total number of arbitrary fun
tions is less by just one@the boundary valueU(r ,0) is deter-
mined by the solutionQ(r ,0)#.

Next, the solutionQ(r ,z) must be positive as discusse
above because of the definition of Eq.~5!. Typically, it ap-
pears that for the positive functionQ0(z), the solution
Q(r ,z) is also positive, as in the example considered be
@the other requirement,Vz(r 0,0)5const, is also satisfied in
this example#.

Further, the functionsQ(r ,z) and T(r ,z) should satisfy
the condition

Q~r ,z!2T~r ,z!,0 ~11!

according to the definition ofQ, Eqs.~3! and ~9!. This is a
rather serious restriction, but in practice a free choice of
whole set of other functions still allows quite enough spa
for playing with various solutions, each of which provid
the same set of curvesr 5r (r 0 ,z) on the meridional plane
so that the restriction can be rather loose in many cases~such
a case is considered in the next section!.

Finally, there is another kind of restriction concerning t
behavior of the potentialsQ andU as functions ofr near the
beam axis. The matter is that, assuming no electric charg
d-function density is placed at the axis, one has the elec
potential satisfying the condition

]U

]r U
r 50

50. ~12!

On the other hand, when the magnetic field does not incre
very fast near the axis, i.e., whenBz;o(r 21) at r→0, one
hasC(r ,z);o(r ), r→0, so that another condition arise
U(0,z)52eQ(0,z)/ueu, i.e.,

T~0,z!5Q~0,z!, ~13!

whereQ(0,z)5Q0(z) is the boundary function used in Eq
~2!.

The conditions~12! and~13! are quite crucial. In fact, it is
due to these requirements used as the only boundary co
tions for Eq. ~7! that the ill-posed Cauchy problem fo
Laplace’s equation arises in the conventional approach w
the beam charge is neglected@7#. In such a formulation, the
given problem is numerically unstable and as a result
whole approach is inappropriate for numerical simulation

Notice, however, that neither condition~12! nor ~13! is
formally required from the more general point of view, a
so neither one is a nominal restriction. Violation of the
conditions means only either imposing a fixed line charge
the Z axis or increasing magnetic field too rapidly whenr
→0, respectively. Nevertheless, satisfying both the con
tions ~12! and ~13! is, indeed, necessary from the practic
point of view. Therefore, a method that allows these com
cations to be overcome by means of a more general ana
is needed.

A simple iterative procedure for solving this problem b
satisfying both conditions~12! and~13! simultaneously when
performing numerical calculations is proposed in the n
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section of the paper. At the same time, it appears that c
dition ~11! is also better satisfied as a result of such ite
tions.

III. NUMERICAL RESULTS

Let us apply the approach considered above to the c
when the ion trajectoriesr (r 0 ,z) and their transverse distri
butionp(r 0) at the entrance plane are given by the functio

r ~r 0 ,z!5r 0 exp@2~z/ f !3# ~14!

and

p~r 0!5
P0

pa2
exp@2~r 0 /a!2#, ~15!

wheref is the effective focal length,a is the entrance beam
radius, andP0 is the line density of the beam at the entran
planez50.

The functions~14! are very suitable for the analysis sinc
first, they allow us to find an analytical solution to Eq.~2!,
second, they describe a significant compression of the
beam~Fig. 1!, and third, they correspond to the case wh
the planez50 is an equipotential surface that can be cons
ered as a planar surface of the ion emitter.

As one can see, since both the first and second derivat
of the functionsr (r 0 ,z) with respect toz are zero atz50,
the curvesr (r 0 ,z) are normal to ther axis atz50 and the
requirement ofVz(r 0,0)5const is also automatically satis
fied @see Eq.~3!#.

In the case considered, Eq.~2! takes the form

]Q

]r
1

3rz2

f 3

]Q

]z
526r z

2 f 323z3

f 619r 2z4 Q. ~16!

This has an analytical solution

Q~r ,z!5Q0~z0!
119r 2z4/ f 6

~113r 2z/2f 3!4 , ~17!

where Q0(z0) is the boundary-value function chosen arb
trary, with the value z0 being defined asz05z/(1
13r 2z/2f 3). The solutionQ(r ,z) is positive everywhere a
z>0 if the axial boundary functionQ0(z0) is chosen posi-
tive as required by definition of bothQ(r ,z) and Q0(z0),
Eqs.~5! and ~6!.

Now, taking some functionsQ0(z0).0, U(R,z), and
U(r ,L), and imposing boundary conditions~10! and~12! or
~10! and ~13!, one can solve Eq.~7! by any numerical
method~the efficient method based on Stone’s strongly i
plicit procedure@10# has been used in this work!. In this
manner, one generally obtains a kind of solution that d
not satisfy Eq.~13! or Eq. ~12!, respectively, and often doe
not satisfy condition~11! either.

In order to get a solution that satisfies all the requir
conditions, the following iterative procedure was impl
mented. First, starting from any reasonable functionQ0(z0)
.0 and imposing the condition~12!, one obtains a solution
U(r ,z) with T(0,z)ÞQ0(z). Then, the functionQ0(z) is
1-3
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updated to be equal to the functionT(0,z) just obtained.
Now, the new functionQ0(z) is used as the axial boundar
function in Eq.~17! and the solutionU(r ,z) is updated, al-
ways assuming the condition~12!. In this way, the iterations
continue until the required solution is obtained.

The iterations appear to be convergent providing the fi
solutionQ0(z), Q(r ,z), andT(r ,z), which satisfy both the
conditions~12! and~13! simultaneously. Moreover, there is
domain of the parameters where the condition~11! is also
satisfied, despite the tendency to be violated for the beam
higher density and compression.

Some examples of the solutions obtained in this way
the beam specified by Eqs.~14! and ~15! are discussed be
low. The solutions are found for two similar systems th
differ only by the boundary conditions at the side wallr
5R and at the exit planez5L. The boundary conditions
common for both systems, in addition to Eqs.~10!, ~12!, and
~13!, are

C0~r 0!50 at 0<r<R, z50, ~18!

]T~r ,z!/]z50 at 0<r ,r 1 , z5L, ~19!

and

T~r ,z!5TL at r 1<r<r 2 , z5L, ~20!

where TL52ueuUL /e is the given potential of the ring
shaped counterelectrode~collector! at the exit planez5L.
The potential at the entrance plane,T05T(r ,0), related to
the ion velocityVz(r ,0) by Eqs.~5! and~10!, is not specified,
being determined self-consistently by the solutionQ(r ,z).

The other boundary conditions, specific in each case,

T~R,z!5Q~R,z!, 0<z<L,
~21!

T~r ,L !5Q~r ,L !, r 2,r<R

for the first system and

T~R,z!5T0 , 0<z<L,
~!22

]T~r ,L !/]r 50, r 2,r<R

for the second one.
In the first case, the conditions~18! and ~21! require that

the magnetic flux through the circular loops at the relev
boundaries@e.g., C(R,z) when r 5R, 0<z<L# should be
zero while the potential should vary properly between
emitter and the collector, with the emitter being the entra
planez50. In the second case, no conditions are imposed
the magnetic flux on the boundariesr 5R andz5L, with the
only typical requirement of zero flux at the emitter@7#, Eq.
~18!. In this case, however, the side walls should be ma
tained at the potential of the emitter.

Solutions for the first system are shown in Figs. 2 and
where the parameters, in relative units, areL51, R51, f
50.85, a50.5, r 150.125, r 250.375, and TL51, with
P052 @Fig. 2~a!# and P050.1 @Fig. 2~b!# for the beam of
high and low density, respectively. For the valuesL
51 cm andTL510 kV, in the case of an electron bea
04650
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(m5me) with P052, it corresponds to Q0(0)
537 V, Q0(L)54.75 kV, V0(0)53.63108 cm/s, and
V0(L)543109 cm/s. Such a system would focus a lamin
beam carrying a total currentI e50.63 A, with the entrance
and exit beam radiia055 mm andaL51 mm that corre-
spond to the mean current densitiesj 050.8 A/cm2 and j L
520 A/cm2, respectively, and to the maximum electro
density at the exit planenmax5n(0,L)5331010 1/cm3 ~the
ion beam would be of the same density, with the currenI
5I eAme /m).

The shape of the functionQ(r ,z), Fig. 2~a!, is rather typi-
cal for various kinds of boundary conditions, including th
cases in whichT(r ,L)5Q(r ,L) at the whole collector plane
z5L (0<r<R) or, e.g., whenT(r ,L)5TL at 0<r<R and
T(R,z)5T01(TL2T0)z/L at 0<z<L. The reason is tha
Q(r ,z) is defined via the ion velocity on axis, Eq.~6!, estab-
lished self-consistently together with the space-charge di
bution, which is quite a robust entity.

The typical shape ofQ(r ,z) determines the optimum siz
and position of the collector as specified above, which allo
us to satisfy condition~11! in all the cases considered. Wit
such a collector, the potential functionT(r ,z) is also rather
typical, except for minor features like the one observed
Fig. 2~b! for the low-density beam ofP050.1, which is quite

FIG. 2. The solutions~a! Q(r ,z) and ~b! T(r ,z) found for the
first focusing system~relative units!.
1-4
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ALTERNATIVE APPROACH TO THE NUMERICAL . . . PHYSICAL REVIEW E 63 046501
close to the limiting case ofP050. In this case, an addi
tional electrode at the side wall would be useful~e.g., the one
coinciding with the equipotential curveM at a slightly repul-
sive potentialTM50.1 compared to the potential of the em
ter T050.14) in order to improve the distribution ofT(r ,z)
near the wall.

Magnetic field is more sensitive to the choice of bound
conditions since it depends on the difference of two fu
tions, Q(r ,z) and T(r ,z). Figures 3~a! and 3~b! show the
magnetic fieldBW (r ,z)(uBmaxu;0.2 T) needed for supporting
the beams of high and low density, respectively.

Solutions for the second focusing system producing
dense beam are similar to the ones shown above, espec
in the region occupied by the beam. The distinction, ho
ever, increases for beams of lower density@cf. Figs. 3, 4~a!,
and 4~b!, respectively# since the fields inside the beam b
come more sensitive to the boundary conditions when
space charge of the beam decreases.

In general, the second system is much simpler compa
to the first one, both in the design of the side-wall electro
~now it is just a cylindrical continuation of the emitter atr
5R and 0<z<L) and in the distribution of the magneti
field, Figs. 4~a! and 4~b!. At the same time, creating th
particular distribution of the magnetic field as defined by
solutions of Eqs.~2! and ~7! is crucial for producing the
perfect laminar beam of the given density and spatial c
figuration.

FIG. 3. The magnetic fluxC(r ,z) required for supporting the
beam of~a! high and~b! low density in the first focusing system
~relative units!.
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For comparing different solutions discussed above, Fig
shows the ion velocity on the beam axis. Lower values of
velocity at the emitter observed for the beams of higher d
sity at the same value ofTL are a result of a significant spac
charge accumulated in the beam. The latter prevents the
from being properly accelerated and, with further increas
the beam density, disrupts the laminar ion motion so that
solution can be obtained for the given trajectories at
given values of the parameters.

FIG. 4. The magnetic fluxC(r ,z) required for supporting the
beam of~a! high and~b! low density in the second focusing syste
~relative units!.

FIG. 5. Ion velocity on the beam axis,Vz(0,z), found self-
consistently for the beams of high~1,3! and low~2,4! density in the
first ~1,2! and in the second~3,4! focusing systems~relative units!.
1-5
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Because of such an effect, the solutions for the de
beam found above are, in fact, nearly at the highest va
for the system parameters that determine the density and
rate of compression of the laminar beam (P0 , f , andL at
the fixed values ofR and TL) for the given set of the ion
trajectories. This example, however, is much too restrict
because of the extremely fast convergence of the trajecto
required by Eq.~1!. With more realistic sets of trajectorie
converging into a dense beam not so rapidly~such as in the
Pierce gun@11#, etc.!, a solution may exist for the beams o
a higher density, although in these cases one may nee
solve Eq.~2! numerically as explained in@8#.

IV. CONCLUSIONS

In this work, we have shown that the problem of nume
cal synthesis of ion-beam focusing systems that prep
dense laminar beams of a given profile and compression
be reduced to successive solutions of two well-po
boundary-value problems for the linear partial different
equations, instead of the ill-posed problem arising due to
conventional approach when the space charge of the bea
neglected.

According to the new approach, the first problem to so
is Stormer’s trajectory equation formulated in terms of t
on
o

ra

a-
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unknown equivalent potentialQ. An analytical solution to
this equation for a specific kind of focusing system has b
found.

The second problem is to obtain the proper solution
Poisson’s equation. Well-posed boundary-value proble
have been considered in order to obtain such a solution
self-consistent numerical method for satisfying the ax
boundary conditions for Poisson’s equation is proposed.

Analytical solutions and numerical simulations ha
shown that, generally, the required dense laminar ion be
with the ion trajectories of a desired profile can be formed
the proper superposition of both the electric and magn
fields, despite the tendency of the magnetic field to mix
trajectories.

In general, the beams of the same shape can be forme
essentially different electric and magnetic fields depend
on the choice of a few arbitrary functions used as the bou
ary conditions. Some examples of the solutions of this k
have been provided.
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