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Alternative approach to the numerical synthesis of the dense-ion-beam focusing systems
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An alternative approach has been developed to the numerical synthesis of ion-beam focusing systems that
prepare the dense laminar ion beams with the required profile of the ion trajectories. Conventionally an
ill-posed synthesis problem arises in such cases, and only low-density beams with no magnetic field are treated.
Instead, we compute both the electric and magnetic fields by considering two well-posed problems, the first for
the equivalent potentia and the second for the electric potentidl An analytical solution forQ for the
specific case of an axial system has been found and a self-consistent method of satisfying the axial boundary
conditions for Poisson’s equation this described. It is shown that the beam can be focused while preserving
its laminar structure and the required profile when applying various superpositions of both the electric and
magnetic fields.
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[. INTRODUCTION problems. For this reason, the synthesis problem was only

lon and electron beams of high density are in use in mangonsidered for low-density beams with no magnetic field
fields of modern science and technolddy-4]. The dense Wwhen analytical solutions to Laplace’s equation could be
electron beams are required for powerful microwave andound using the theory of functions of a complex variable
millimeter wave generatoifd]. Well-formed high-power ion  [6,7]. o
beams are needed for etching and modification of metal, In order to overcome the complications, another approach
semiconductor, and insulator surfag@s Another important Was proposed i8] that is based on the possibility of con-
application is the ion doping of semiconductors when ionsidering and solving numerically a series of more general
beams of various energy, density, and chemical compositioWell-posed boundary-value problems instead of a single
are used to obtain the doping profiles with the required spaProblem arising due to the conventional approach. According
tial configuration[3,4]. to [8], some functions used for imposing the boundary con-

Formation of ion beams of high density is a complicatedditions could be chosen arbitrarily so that a series of solu-
problem because of the very strong Coulomb interaction ofions for the electric and magnetic fields is obtained. In gen-
the ions within the bear[ﬁ]_ So, a magnetic field is norma"y eral, any of these could be used as the final solution since
required, in addition to a properly configured electric field, inthey all yield a solution to the original problem providing the
order to compress a stream of accelerated ions into the den&guired spatial structure of the beam. .
beam of a special shagé,7]. Unfortunately, the magnetic ~ The aim of this work is to develop the approacH{ &} in
field essentially complicates the internal structure of theorder to find analytical solutions whenever possible and to
beam due to heavy mixing of the ion trajectories and thePropose the effective procedure for choosing the most appro-
creation of a turbulent flux of particles instead of a laminarPriate solution for the electric and magnetic fields needed for
stream. This may be unacceptable for many applicationgreparing the dense laminar ion beams with a required spa-
when especially high precision and spatial resolution are retial configuration.
quired[4].

An intriguing question of practical importance arises in Il. PROBLEM FORMULATION

such cases as to whether it is possible to focus a dense ion ) o )
beam while preserving its perfect laminar structure when Consider a cylindrical focusing system of the lengtand

both the electric and magnetic fields have been applied sfadiusR supporting a dense laminar ion beam of axial sym-
multaneously. Because of the magnetic field mixing the tramMetry and of gradL_JaIIy decreasing radius. The beam propa-
jectories, there is a presumption that this is generally imposg@ates along the axis from the entrance plane z¢ 0 to the

sible except for the trivial case of a cylindrical beam in a€Xit plane az=L and consists of one type of ion with mass
uniform magnetic fieldthe Brillouin solution [6,7]. m and chargee. The ions move within the beam due to the

Apart from this question, it is a complicated problem by force of both the electric and magnetic fields, which are char-

itself to calculate both the electric and magnetic fields in anyaCterized by the scalar potentid(r,z) and the vector po-
combined electromagnetic system producing high-densityential A(r,z)=A(r,z)¢ with the axial symmetry of the
ion beamyg5-7]. The complications appear due to the factsystem taken into account.

that the synthesis of the focusing system is an inverse math- The ion trajectories are specified by their projections onto
ematical problem that is typically formulated as an ill-posedthe meridional plane r(z) in the cylindrical coordinate
Cauchy problem for Laplace’s or Poisson’s equatjéh  frame (,¢,2),

Such a formulation is, however, inappropriate for the nu-

merical solution because of numerical instability of ill-posed r=r(rg,2), (h]
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1 Equation(2) is normally used to find the ion trajectories
when Q(r,z) is known. However, if the trajectories are
075 ) known, one can use E@2) to obtain the effective potential
N Q(r,z). In terms ofQ, Eq. (2) is a linear partial differential
equation of the first order. Therefore, one can always solve it
-~ 05 e by the method of characteristics provided the trajectories
have no return points and the boundary value®@f,z) are
0.5 ) given along the curve that is not a characterif8it A suit-
able curve of this kind is the axi®Z, where the values
Qo(2)=Q(0,z) determine the ion velocity along the axis,
0

0 0% 05 0B Vo(2)=V,(0.2) = V2[e[Qo(2)/m. )

z
The functionQy(z) is one of a series of functions chosen
arbitrarily according to the approach [i].

Once Q(r,z) is found, the electric potential(r,z)
=—|e|T(r,z)/e can be obtained from Poisson’s equation,

FIG. 1. Projections of the ion trajectories=r(ry,z) onto the
meridional plangrelative units.

wherer  is the radial coordinate of the initial point,0) of
the trajectory considere@ig. 1). For simplicity, we assume P2U 10U 52U
below that all the curves=r(ry,z) are orthogonal to the =
axis atz=0 and all the ions have the same axial velocity
V,(ry,0)=const at the entrance plaze-0.

The density of the trajectories is specified by their radial
distribution p(ry) at z=0. Using the conditionV,(r,0)
=const, the functiom(ry) is normalized to be identical to
the local ion density at the entrance plane, wikh
=277f§p(r0)rodr0 being the line density of the beam at
=0. _ _ o , p(r,2)=ep(ro)(ro/r)?V,0,0/Vr,z), tS)

Notice that the ion trajectories in a laminar beam, al-
though being twisted by the magnetic field, do not intersectwherer=rq(r,z) according to Eq(1).
nor do their projections on the meridional plane given by Eq. Equation(7) can be solved by any numerical method pro-
(1). So, for any trajectory passing through any given pointvided a well-posed boundary-value problem is formulated. A
(r,z), a unique value for the initial coordinatg=rq(r,z) suitable formulation would be the Dirichlet problem when

p
o v r T aZ T go’ 0
wherep(r,z) is the space-charge density of the beam and

is the absolute permittivity. The functiop(r,z) is already
available since it is determined by the ion trajectories
r(rq,z), their entrance distributiop(ry), and the ion veloc-
ity V,(r,z), so that

can always be found by inverting the functiofis. the functionsU(0,2), U(R,z), U(r,0), and U(r,L) are
Functions(1) should satisfy Stormer’s trajectory equation considered as the given boundary values required for the
[7] unigue solutionU(r,z) to be obtained. These functions can
be freely chosen to be any reasonably smooth functions.
d’r [0Q 4Qdr dr\?] 1 Proceeding in this way, one obtains the functibfr,z)
dZ \or oz dz + dz) |2Q’ @ - —eU(r,z)/|e|, which is normally different from the func-
tion Q(r,z). This means that some magnetic field is gener-
where ally required to obtain the desired trajectori@$ The mag-
netic field can be found from the magnetic flaik(r,z)
Q=Q(r,2)=T—n(¥—W¥q)*r? (3)  calculated as
is the effective potential, W(r,2)=Po(ro)+r\(T—Q)/7, 9
T=T(r,z)=—eUlle|, (4 where Wo(ro)=¥(ro,0) is also the function chosen arbi-
trarily andry=ro(r,z).
n=|el/(8m°m), W=W(r,z)=2mTAr,2) is the magnetic Thus, according to this approach, an infinite set of various

flux associated with the circular loop of the radiust the  solutions for the electric and magnetic fields can be found
planez, andWo="W(ro) =¥ (ro,0) is the value of" atthe  depending on a few arbitrarily chosen functions, and each of
initial point (r,0) of the trajectory passing through the point the solutions provides the same set of the trajectory projec-

(r,2), with ro=ro(r,2z) according to Eq(1). tions r=r(rq,z) on the meridional plane as required, al-
The equivalent potentiaD(r,z) must be positive to de- though the trajectories can be twisted in a different way
termine the axial component of the ion velocity about the beam axis.
Notice, however, that the choice of some arbitrary func-
V,(r,2)=2[e|Q(r,2)/{m[ 1+ (dr/d2)*]}. (5)  tions is in some aspects restricted. First, according to the

definition of Q, one has always the condition
Q(r,z) should also satisfy the assumptidfy(ry,0)=const

made about the ion motion in E¢L). T(r,00=Q(r,0) (10
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but this only implies that the total number of arbitrary func- section of the paper. At the same time, it appears that con-
tions is less by just ongthe boundary valuél(r,0) is deter-  dition (11) is also better satisfied as a result of such itera-
mined by the solutiorQ(r,0)]. tions.

Next, the solutionQ(r,z) must be positive as discussed
above because of the definition of E&). Typically, it ap- I1l. NUMERICAL RESULTS

pears that for the positive functio@q(z), the solution .
Q(r,2) is also positive, as in the example considered below L€t Us apply the approach considered above to the case

[the other requiremeny/,(r,,0)=const, is also satisfied in when the ion trajectories(ry,z) and their transverse distri-

this examplé butionp(rg) at the entrance plane are given by the functions
thng(;t:;:i,otnhe function®)(r,z) and T(r,z) should satisfy F(ro,2)=roexg — (2/f)°] (14)
and
Q(r,2)=T(r,2)<0 (11)
P
according to the definition of, Egs.(3) and(9). This is a p(ro)= —aozexp{—(ro/a)z], (15
v

rather serious restriction, but in practice a free choice of the

whole set of pther f_unct|ons Sft'" allows quite e.nough SPACE, heref is the effective focal lengtha is the entrance beam
for playing with various solutions, each of which provides

- radius, andP, is the line density of the beam at the entrance
the same set of curvas=r(ry,z) on the meridional plane, planez=0
so that the restriction can be rather loose in many caeh L . .
acase s consere i the et secion o Slon L s vy st o 1 eyl ence.
Finally, there is another kind of restriction concerning the__ ™ y Y '

: . : second, they describe a significant compression of the ion
behawor_of the potentle_lI@ andU as fu_nctlons of near the bfeam(Fig. 1, and third, they correspond to the case when
beam axis. The matter is that, assuming no electric charge

é-function density is placed at the axis, one has the e'ec”iiet:(flggfjgﬁiragufﬁafgogf?ﬁgliiﬁrfe?ﬁﬁtg;at can be consid-
potential satisfying the condition P .

As one can see, since both the first and second derivatives

of the functionsr(ry,z) with respect taz are zero az=0,
au .
— =0. (12)  the curves(rq,z) are normal to the axis atz=0 and the
Moo requirement ofV,(ry,0)=const is also automatically satis-

L _ fied [see Eq.3)].
On the other hand, when the magnetic field does not increase |n the case considered, EQ) takes the form
very fast near the axis, i.e., wh@,~o(r 1) atr—0, one

hasW¥(r,z)~o(r), r—0, so that another condition arises, dQ 3rz?oQ _ 2f3-328
U(0,2)=—-eQ(0:2)/]¢|, i.e., o T T 92 Q- (16)
T(0,2)=Q(0,2), (13  This has an analytical solution
. . . 2,41¢6
whereQ(0,2) =Q(2) is the boundary function used in Eq. _ 1+9r°z°/f
(2) Q(rvz)_QO(ZO)(1+3rZZ/2f3)41 (17)

The conditiong12) and(13) are quite crucial. In fact, it is
due to these requirements used as the only boundary condithere Qq(zo) is the boundary-value function chosen arbi-
tions for Eq.(7) that the ill-posed Cauchy problem for trary, with the value z, being defined aszy=z/(1
Laplace’s equation arises in the conventional approach whetr 3r2z/2f%). The solutionQ(r,z) is positive everywhere at
the beam charge is neglectgd. In such a formulation, the z=0 if the axial boundary functio®y(z) is chosen posi-
given problem is numerically unstable and as a result théive as required by definition of bot®(r,z) and Qq(zo),
whole approach is inappropriate for numerical simulation. Egs.(5) and(6).

Notice, however, that neither conditiqd2) nor (13) is Now, taking some function®,(z,)>0, U(R,z), and
formally required from the more general point of view, andU(r,L), and imposing boundary conditioi$0) and(12) or
so neither one is a nominal restriction. Violation of these(10) and (13), one can solve Eq(7) by any numerical
conditions means only either imposing a fixed line charge amethod(the efficient method based on Stone’s strongly im-
the Z axis or increasing magnetic field too rapidly when plicit procedure[10] has been used in this workin this
—0, respectively. Nevertheless, satisfying both the condimanner, one generally obtains a kind of solution that does
tions (12) and (13) is, indeed, necessary from the practical not satisfy Eq(13) or Eq.(12), respectively, and often does
point of view. Therefore, a method that allows these compli-not satisfy condition11) either.
cations to be overcome by means of a more general analysis In order to get a solution that satisfies all the required
is needed. conditions, the following iterative procedure was imple-

A simple iterative procedure for solving this problem by mented. First, starting from any reasonable functigyfzy)
satisfying both condition&l2) and(13) simultaneously when >0 and imposing the conditiof12), one obtains a solution
performing numerical calculations is proposed in the nextJ(r,z) with T(0,2)# Qqu(z). Then, the functionQy(z) is
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updated to be equal to the functidi(0,z) just obtained. 1 - Q(rz)
Now, the new functiorQq(z) is used as the axial boundary
function in Eq.(17) and the solutiorlJ(r,z) is updated, al-
ways assuming the conditidid2). In this way, the iterations
continue until the required solution is obtained.

The iterations appear to be convergent providing the final
solutionQy(2), Q(r,z), andT(r,z), which satisfy both the
conditions(12) and(13) simultaneously. Moreover, there is a
domain of the parameters where the conditi@d) is also
satisfied, despite the tendency to be violated for the beams of
higher density and compression.

Some examples of the solutions obtained in this way for
the beam specified by Eq€l4) and (15) are discussed be-
low. The solutions are found for two similar systems that
differ only by the boundary conditions at the side wall (a)
=R and at the exit plane=L. The boundary conditions
common for both systems, in addition to E¢k0), (12), and
(13), are

Po(rg)=0 at Osr=R, z=0, (18)
dT(r,z)/9z=0 at O<r<rq,, z=L, (19

and

T(r,2)=T, at ri;<r=<r,, z=L, (20

where T =—|e|U /e is the given potential of the ring-
shaped counterelectrodeollecto) at the exit planez=L.
The potential at the entrance plarnig,=T(r,0), related to
the ion velocityV,(r,0) by Eqgs.(5) and(10), is not specified,
being determined self-consistently by the solut®@(r,z). (b)

The other boundary conditions, specific in each case, are FIG. 2. The solutionga) O(r,2) and (b) T(r.Z) found for the

T(R2)=Q(R,z), O<z=L first focusing systentrelative units.

(21
T(r,L)=0Q(r,L), r,<r<R (m=m,) with Py=2, it corresponds to Qu(0)
=37 V, Qu(L)=4.75 kV, Vy(0)=3.6x1C° cm/s, and
Vo(L)=4Xx10° cm/s. Such a system would focus a laminar

for the first system and

T(R2)=T,, 0<z=<L, beam qarrying a to't'al curreht=0.63 A, with the entrance
022 and exit beam radiag=5 mm and:’;t,_=1 mm that corre-
aT(r,L)/ar=0, r,<r<R spond to the mean current densitigs=0.8 A/cn? and j,
=20 Alcn?, respectively, and to the maximum electron
for the second one. density at the exit plang,=n(0,L)=3x10% 1/cn? (the

In the first case, the conditior{48) and(21) require that ion beam would be of the same density, with the curient
the magnetic flux through the circular loops at the relevant | ¢ymg/m).
boundariede.g., ¥(R,z) whenr=R, 0<z=<L] should be The shape of the functioQ(r,z), Fig. 2a), is rather typi-
zero while the potential should vary properly between thecal for various kinds of boundary conditions, including the
emitter and the collector, with the emitter being the entranceases in whici(r,L)=Q(r,L) at the whole collector plane
planez=0. In the second case, no conditions are imposed oa=L (0<r=<R) or, e.g., whenT(r,L)=T, at O<r=<R and
the magnetic flux on the boundaries R andz=L, withthe  T(R,z)=Ty+ (T —Ty)z/L at 0<z=<L. The reason is that
only typical requirement of zero flux at the emit{él], Eq. = Q(r,z) is defined via the ion velocity on axis, E@), estab-
(18). In this case, however, the side walls should be mainilished self-consistently together with the space-charge distri-
tained at the potential of the emitter. bution, which is quite a robust entity.

Solutions for the first system are shown in Figs. 2 and 3, The typical shape o®(r,z) determines the optimum size
where the parameters, in relative units, arel, R=1, f and position of the collector as specified above, which allows
=0.85, a=0.5, r;=0.125,r,=0.375, and T =1, with us to satisfy conditiori11) in all the cases considered. With
Po=2 [Fig. 2@)] and P4=0.1 [Fig. 2b)] for the beam of such a collector, the potential functidr(r,z) is also rather
high and low density, respectively. For the valués typical, except for minor features like the one observed in
=1 cm andT_ =10 kV, in the case of an electron beam Fig. 2(b) for the low-density beam d?;=0.1, which is quite
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FIG. 3. The magnetic fluaV(r,z) required for supporting the FIG. 4. The magnetic flufV'(r,z) required for supporting the
beam of(a) high and(b) low density in the first focusing system beam of(a) high and(b) low density in the second focusing system
(relative units. (relative unitg.

close to the limiting case oPy=0. In this case, an addi-
tional electrode at the side wall would be usdtil., the one
coinciding with the equipotential curvd at a slightly repul-

For comparing different solutions discussed above, Fig. 5
shows the ion velocity on the beam axis. Lower values of the
) X X .. velocity at the emitter observed for the beams of higher den-
sive potentiallyy =0.1 compared to the potential of the emit- i, ot the same value df, are a result of a significant space
;eg;otﬁg.v%/g?l in order to improve the distribution ai(r,z) charge accumulated in the beam. The latter prevents the ions

ST . . from being properly accelerated and, with further increasing

Magnetic field is more sensitive to the choice of boundary,[he beam density. disrunts the lami . i that
conditions since it depends on the difference of two func- : y, ISTUPIS the faminar ion motion so that no
tions, Q(r,z) and T(r.z). Figures &) and 3b) show the splutlon can be obtained for the given trajectories at the

S = . given values of the parameters.
magnetic fieldB(r,z)(|Bmad ~0.2 T) needed for supporting
the beams of high and low density, respectively.

Solutions for the second focusing system producing a
dense beam are similar to the ones shown above, especially
in the region occupied by the beam. The distinction, how-
ever, increases for beams of lower densitfy Figs. 3, 4a),
and 4b), respectively since the fields inside the beam be-
come more sensitive to the boundary conditions when the
space charge of the beam decreases.

In general, the second system is much simpler compared
to the first one, both in the design of the side-wall electrode
(now it is just a cylindrical continuation of the emitter it
=R and 0<z=L) and in the distribution of the magnetic
field, Figs. 4a) and 4b). At the same time, creating the 2
particular distribution of the magnetic field as defined by the
solutions of Eqgs.(2) and (7) is crucial for producing the FIG. 5. lon velocity on the beam axi§/,(0,z), found self-
perfect laminar beam of the given density and spatial coneonsistently for the beams of hig,3) and low(2,4) density in the
figuration. first (1,2) and in the seconB,4) focusing systemsrelative units.

1

V.(0,2)
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Because of such an effect, the solutions for the densenknown equivalent potentigD. An analytical solution to
beam found above are, in fact, nearly at the highest valuethis equation for a specific kind of focusing system has been
for the system parameters that determine the density and thHeund.
rate of compression of the laminar beaf,( f, andL at The second problem is to obtain the proper solution of
the fixed values oR and T, ) for the given set of the ion Poisson’s equation. Well-posed boundary-value problems
trajectories. This example, however, is much too restrictivehave been considered in order to obtain such a solution. A
because of the extremely fast convergence of the trajectorielf-consistent numerical method for satisfying the axial
required by Eq(1). With more realistic sets of trajectories boundary conditions for Poisson’s equation is proposed.
converging into a dense beam not so rapi@ych as in the Analytical solutions and numerical simulations have
Pierce gur(11], etc), a solution may exist for the beams of shown that, generally, the required dense laminar ion beam
a higher density, although in these cases one may need With the ion trajectories of a desired profile can be formed by

solve Eq.(2) numerically as explained if8]. the proper superposition of both the electric and magnetic
fields, despite the tendency of the magnetic field to mix the
IV. CONCLUSIONS trajectories.

_ ~In general, the beams of the same shape can be formed by
In this work, we have shown that the problem of numeri-essentially different electric and magnetic fields depending
cal synthesis of ion-beam focusing systems that prepargn the choice of a few arbitrary functions used as the bound-

dense laminar beams of a given profile and compression cag}y conditions. Some examples of the solutions of this kind
be reduced to successive solutions of two well-posethaye been provided.

boundary-value problems for the linear partial differential
equations, instead of the ill-posed problem arising due to the
conventional approach when the space charge of the beam is
neglected. The authors are grateful to J. A. Murphy for useful dis-

According to the new approach, the first problem to solvecussions and to the National University of Ireland, May-
is Stormer’s trajectory equation formulated in terms of thenooth, for the partial support of this work.
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